327 research outputs found

    On representing the relationship between the mathematical and the empirical

    Get PDF
    We examine, from the partial structures perspective, two forms of applicability of mathematics: at the “bottom” level, the applicability of theoretical structures to the “appearances”, and at the “top” level, the applicability of mathematical to physical theories. We argue that, to accommodate these two forms of applicability, the partial structures approach needs to be extended to include a notion of “partial homomorphism”. As a case study, we present London’s analysis of the superfluid behavior of liquid helium in terms of Bose-Einstein statistics. This involved both the introduction of group theory at the top level, and some modeling at the “phenomenological” level, and thus provides a nice example of the relationships we are interested in. We conclude with a discussion of the “autonomy” of London’s model

    Replacing Recipe Realism

    Get PDF
    Many realist writings exemplify the spirit of ‘recipe realism’. Here I characterise recipe realism, challenge it, and propose replacing it with ‘exemplar realism’. This alternative understanding of realism is more piecemeal, robust, and better in tune with scientists’ own attitude towards their best theories, and thus to be preferred

    The UK Ministry of Defence Project Orientated Environmental Management System (POEMS)

    Get PDF
    The Project Orientated Environmental Management System (POEMS) is the UK Ministry of Defence (MoD) bespoke environmental management system for the acquisition and use of equipment. The full implementation of a site-specific environmental management system is challenging for the MoD because there are many permanent MoD sites with transient populations, frequently changing site activities and diverse types of equipment. Nevertheless, MoD policy requires that all sites are covered by an environmental management system. POEMS is based on international standards ISO14001 and ISO14040, which focus on environmental management systems and life cycle assessment, respectively. The primary aim of POEMS is to identify and manage any environmental aspects (causes) and impacts (effects) by scrutinising MoD equipment and activities during acquisition, operation and disposal. This is achieved by drawing up a priority list of activities associated with the equipment based on anticipated environmental impact scores, resulting in an environmental management plan that spans the life cycle of the equipment and any corresponding activities. This article describes the POEMS procedure for both experts and non-experts, and demonstrates the implementation of POEMS using a 105-mm artillery round as a theoretical case study. The results anticipated at each stage of the POEMS procedure are discussed in detail, and the documentation necessary to verify the correct application of POEMS is demonstrated

    Optimised accelerated solvent extraction of hexahydro‐1, 3, 5‐trinitro‐1, 3, 5 triazine (RDX) from polymer bonded explosives

    Get PDF
    An Accelerated Solvent Extraction (ASE) method was developed and optimised to extract hexahydro‐1,3,5‐trinitro‐1,3,5‐triazine (RDX) from a polyurethane matrix. The ASE method development was benchmarked against Soxhlet extraction with a view to improving extraction efficiency in terms of time and solvent volume. Key parameters for the ASE method development involved selecting the most appropriate solvent, optimising static time, ensuring a safe oven temperature for explosives, determination of a sufficient number of rinse cycles and effective sample preparation. To achieve optimal extraction, cutting the PBX samples to maximise solvent exposure was essential. The use of acetone with a static time of 10 minutes at 100 °C with three rinse cycles achieved 97 %±10 % extraction of RDX from PBX in 40 minutes using 72 mL solvent. Extraction time was reduced from 48 hours and solvent use by half compared to the standard Soxhlet extraction. To validate the developed ASE method, two other PBX samples containing different quantities of explosive were also fully extracted using the same parameters. Overall, ASE efficiency was comparable to Soxhlet, which places the ASE as a good alternative and shows potential for implementation as a standard method for other polymer based explosives

    Release of 1,3,5-trinitroperhydro-1,3,5-triazine (RDX) from polymer-bonded explosives (PBXN 109) into water by artificial weathering

    Get PDF
    Polymer-bonded explosives (PBX) fulfil the need for insensitive munitions. However, the environmental impacts of PBX are unclear, even though it is likely that PBX residues from low-order detonations and unexploded ordnance are deposited on military training ranges. The release of high explosives from the polymer matrix into the environment has not been studied in detail, although as polymers degrade slowly in the environment we anticipate high explosives to be released into the environment. In this study, PBXN-109 (nominally 64% RDX) samples were exposed to variable UK climatic conditions reproduced in the laboratory to determine the effects of temperature, UV irradiation and rainfall on the release of RDX from the polymer binder. The most extreme conditions for spring, summer and winter in the UK were artificially reproduced. We found that up to 0.03% of RDX was consistently released from PBXN-109. The rate of RDX release was highest in samples exposed to the summer simulation, which had the lowest rainfall, but the highest temperatures and longest UV exposure. This was confirmed by additional experiments simulating an extreme summer month with consistently high temperatures and long periods of sunlight. These results probably reflect the combination of polymer swelling and degradation when samples are exposed to higher temperatures and prolonged UV irradiation

    Black hole as an Information Eraser

    Full text link
    We discuss the identity of black hole entropy and show that the first law of black hole thermodynamics, in the case of a Schwarzschild black hole, can be derived from Landauer's principle by assuming that the black hole is one of the most efficient information erasers in systems of a given temperature. The term "most efficient" implies that minimal energy is required to erase a given amount of information. We calculate the discrete mass spectra and the entropy of a Schwarzschild black hole assuming that the black hole processes information in unit of bits. The black hole entropy acquires a sub-leading contribution proportional to the logarithm of its mass-squared in addition to the usual mass-squared term without an artificial cutoff. We also argue that the minimum of the black hole mass is log⁥2/(8π)MP\sqrt{\log 2/(8\pi)}M_P.Comment: 12 pages, 4 figures, minor change

    Investigation into the environmental fate of the combined Insensitive High Explosive constituents 2, 4-dinitroanisole (DNAN), 1-nitroguanidine (NQ) and nitrotriazolone (NTO) in soil

    Get PDF
    Contamination of military ranges by the use of explosives can lead to irreversible environmental damage, specifically to soil and groundwater. The fate and effects of traditional explosive residues are well understood, while less is known about the impact of Insensitive High Explosives (IHEs) that are currently being brought into military service. Current research has focussed on the investigation of individual constituents of IHE formulations, which may not be representative of real-world scenarios when explosive residues will be deposited together. Therefore, this study investigated the fate and transport of the combined IHE constituents 2,4-dinitroanisole (DNAN), 1-nitroguanidine (NQ) and 3-nitro-1,2,4-triazol-5-one (NTO) in two UK soil types. Static experiments ran for 9 weeks to determine the fate of the combined explosive constituents in soil by monitoring the rate of degradation. Transport was examined by running soil column experiments for 5 weeks, with a watering regime equivalent to the average yearly UK rainfall. Both static and soil column experiments confirmed that DNAN and NTO started to degrade within twenty-four hours in soil with high organic content, and were both completely degraded within sixty days. NQ was more stable, with 80% of the original material recovered after sixty days. The major degradation product of DNAN in the test soils was 2-amino-4-nitroanisole (2-ANAN), with trace amounts of 4-amino-2-nitroanisole. NTO was rapidly degraded in soil with high organic content, although no degradation products were identified. Results supported work from literature on the individual constituents DNAN, NQ and NTO suggesting that the three explosives in combination did not interact with each other when in soil. This study should provide a useful insight into the behaviour of three combined Insensitive High Explosive constituents for the predication of soil and water contamination during military training

    Investigation of energetic particle distribution from high-order detonations of munitions

    Get PDF
    Military training with munitions containing explosives will result in the deposition of energetic materials on ranges. These residues contain compounds that may result in human health impacts when off-range migration occurs. Models exist that predict the spatial and mass distribution of particles, but they have proven to be difficult to apply to detonating munitions. We have conducted a series of tests to determine if modelling results can be directly applied to simple detonation scenarios. We also command detonated several rounds to obtain an initial indication of high-order detonation particle distributional heterogeneity. The detonation tests indicate that particle distributions will be quite heterogeneous and that the model used did not adequately describe the distribution of detonation residues. This research will need to be expanded to build an empirical database sufficient to enable the refinement of existing models and improve their predictions. Research on low-order detonations should be conducted as low-order detonations will result in higher mass deposition than high-order detonations. Distribution models verified with empirical data may then be incorporated into range management models

    Ontological dependence in a spacetime-world

    Get PDF
    Priority Monism (hereafter, ‘Monism’), as defined by Jonathan Schaffer (Philos Rev 119:131–176, 2010), has a number of components. It is the view that: the cosmos exists; the cosmos is a maximal actual concrete object, of which all actual concrete objects are parts; the cosmos is basic—there is no object upon which the cosmos depends, ontologically; ontological dependence is a primitive and unanalysable relation. In a recent attack, Lowe (Spinoza on monism. Palgave Macmillan, London, pp 92–122, 2012) has offered a series of arguments to show that Monism fails. He offers up four tranches of argument, with different focuses. These focal points are: (1) being a concrete object; (2) aggregation and dependence; (3) analyses of ontological dependence; (4) Schaffer’s no-overlap principle. These are all technical notions, but each figures at the heart of a cluster of arguments that Lowe puts forward. To respond, I work through each tranche of argument in turn. Before that, in the first section, I offer a cursory statement of Monism, as Schaffer presents it in his 2010 paper, Monism: The Priority of the Whole. I then respond to each of Lowe’s criticisms in turn, deploying material from Schaffer’s 2009 paper Spacetime: the One Substance, as well as various pieces of conceptual machinery from Lowe’s own works (The possibility of metaphysics. Clarendon, Oxford, 1998, 2010) to deflect Lowe’s (Spinoza on monism. Palgave Macmillan, London, pp 92–122, 2012) attacks. In the process of defending Monism from Lowe (Spinoza on monism. Palgave Macmillan, London, pp 92–122, 2012), I end up offering some subtle refinements to Schaffer’s (Philos Rev 119:131–176, 2010) view and explain how the resulting ‘hybrid’ view fares in the wider dialectic

    On the origin of ambiguity in efficient communication

    Full text link
    This article studies the emergence of ambiguity in communication through the concept of logical irreversibility and within the framework of Shannon's information theory. This leads us to a precise and general expression of the intuition behind Zipf's vocabulary balance in terms of a symmetry equation between the complexities of the coding and the decoding processes that imposes an unavoidable amount of logical uncertainty in natural communication. Accordingly, the emergence of irreversible computations is required if the complexities of the coding and the decoding processes are balanced in a symmetric scenario, which means that the emergence of ambiguous codes is a necessary condition for natural communication to succeed.Comment: 28 pages, 2 figure
    • 

    corecore